

1

Honeypot Documentation

Table of contents
1. Introduction ... 3

2. Research .. 4

2.2 Honeypot Differences.. 4

2.2.1 Production Honeypots ... 4

2.2.2 Research Honeypots .. 4

2.3 Honeypot Types ... 4

2.3.1 Pure honeypots ... 4

2.3.2 Low-Interaction ... 4

2.3.3 Mid-Interaction ... 4

2.3.4 High-Interaction... 4

2.4 Honeypot benefits ... 5

2.5 WRM .. 5

2.6 Decision ... 6

3. Environment .. 7

4. Cowrie .. 8

4.2 Linux environment... 8

4.3 Honeypot virtual environment .. 8

4.4 Starting the virtual-environment .. 8

4.5 Running the honeypot ... 8

4.6 Configuration ... 9

4.7 Logging .. 9

4.8 Honeynet ... 9

5. Backups .. 10

5.2 Snapshots .. 10

5.3 SCP ... 10

6. Logstash ... 11

6.2 Information .. 11

6.3 Input .. 11

6.4 Filters ... 11

6.5 Output ... 12

7. Elasticsearch .. 14

7.2 Information .. 14

2

7.3 Security .. 14

8. Kibana .. 15

8.2 Intro ... 15

8.3 DB’s .. 15

8.4 Index management & patterns ... 16

8.5 Custom labels .. 17

8.5.1 Private/public .. 17

8.5.2 Password check ... 18

8.5.3 Talos Check .. 21

8.6 Security .. 22

3

1. Introduction
This documentation is written for Alex Coulon’s internship for the Thomas Bata University in Zlin

(Czech Republic). This document will elaborate on the chosen technologies for the Linux honeypot

solution. The research on different solutions together with a WRM for the chosen solution will be

explained thoroughly and motivated.

Then this document will dive deeper into the chosen technologies and technical analysis of the

installation and maintenance of the honeypot. As a big integration of this project I included more

information about the security part.

As requested by the supervisor this documentation is not in-depth or explaining the installation. He

should be able to understand and maintain the system, change basic configuration with the help of

this document.

4

2. Research
Setting up a basic Linux honeypot is just some clicks and it’s up & running. Finding the right honeypot

solution that suits your wishes and expectations will take some time. During the internship I spend

some time on researching the ideal solution for the UTB. I found hundreds of options for honeypots

and I decided to pick a top 4 who are looking the most interesting for my expectations. These 4 we’re

weighted via a Weighted Ranking Method to decide which one will suit the expectations and demand

of the UTB the best.

2.2 Honeypot Differences

2.2.1 Production Honeypots
Production honeypots are simplified honeypots widely used to gather basic information about

incoming attacks. The possibilities and in-depth options on these types of honeypots are mostly

limited to the basics. Production honeypots are mostly in 1 place running on 1 specific service in

organizations.

2.2.2 Research Honeypots
Research honeypots are full fledged honeypots. These honeypots are used to gather all possible

information on attacks, they are focusing on specific hacking strategies and techniques. Research

honeypots are mostly divided on all services and locations of an organization.

2.3 Honeypot Types

2.3.1 Pure honeypots
Pure honeypots are the real deal made in honeypots, a physical server is build like a real part of the

company with fake confidential data and specific security issues that are monitored closely. They are

looking way more realistic and valuable target for attackers.

2.3.2 Low-Interaction
Low interaction honeypots are deployed in production environments in a virtual machine between

the real virtual machines. They mostly run a limited set of services following the most common attack

vectors or where the organization is most interested in. The interaction part is fairly small, this

mostly contains the possibility to setup up a connection via ftp, ssh, telnet but they are failing

whenever the necessary data is retrieved from the attack.

2.3.3 Mid-Interaction
Mid interaction honeypots are deployed in a production environment in a virtual machine between

the real virtual machines. These honeypots are in place to confuse attackers on whether this is a real

system or a honeypot, the scope is mostly a specific set of honeypots. The interaction part is bigger

then the low-interaction honeypots. Hackers will be able to connect to a server, run scripts, and try

to exploit the system they got into. This is mostly run in virtual environments so after each attack the

environment is logged, deleted & redeployed.

2.3.4 High-Interaction
High interaction honeypots are deployed in a production environment in a virtual machine between

the real virtual machines. These honeypots provide a full set of one or more specific services with full

access to it via a known exploit. These services are disconnected from the organization data so

hackers have full access and can do whatever they want to try in the honeypot. The amount of data

gathered is massively higher since they have full control of the service. This is mostly used to follow

and monitor the steps a hacker is taking whenever he got into the system and rooted a high privilege

user.

5

2.4 Honeypot benefits
1) Low false positive in contrast to IDS/IPS

2) Automated monitoring

3) Runs on low budget/older hardware

4) Expose vulnerabilities

5) Insights into attackers & newest trends

6) Find hackers KPI’s in your system

7) Fully customizable to own needs

8) Possible to visualize data

9) Training employees on handling data streams with no impact on production

2.5 WRM
The weighing has been done on 5 KPI’s (Key Points of Interest).

1) Opensource – 30% - The UTB made clear they are looking for opensource solutions

2) Documentation – 10% - Having well documented and written documentation makes setting

up and maintaining the solution much easier.

3) Active Maintained – 20% - A solution that isn’t being patched, updated or upgraded is not a

good one. We prefer a solution that is being actively maintained.

4) Technical Usage – 30%- We want a solution that is technical not too easy nor hard. We are

looking for something what can be maintained by someone without thorough knowledge. We prefer

a solution with tools and software we have some previous experience in.

5) Extensibility – 20% - A hardcoded non-customizable solution won’t fit any company. The

expansibility and configurability of the solution should be broad enough to customize it for our

expectations.

 Opensource Documentation Active
maintained

Technical
Usage

Extensibility Final
Score

Weight 20 10 20 30 20 100

Dionaea 20 6 5 20 15 66

Cowrie 20 8 18 20 10 76

Heralding 20 4 12 15 5 56

MTPot 20 4 0 10 5 39

6

2.6 Decision
Following my preference and the result of the WRM method I have decided to continue on using

Cowrie for our Linux Honeypot solution. Cowrie is an opensource well maintained honeypot for

Linux.

Official description states the following:

“Cowrie is a medium to high interaction SSH and Telnet honeypot designed to log brute force attacks and the

shell interaction performed by the attacker. In medium interaction mode (shell) it emulates a UNIX system in

Python, in high interaction mode (proxy) it functions as an SSH and telnet proxy to observe attacker behavior to

another system.

Cowrie is maintained by Michel Oosterhoff.”

7

3. Environment
Our working environment is an ESXI 7 virtual environment hosted on an Asus desktop located in our

network. We have a gigabit line coming from the UTB network on which we created our own subnet

with a router and switch to connect our machines & ESXI to it. We have received a gigabit connection

that is unmonitored and tagged as test traffic to make sure we aren’t being blocked by existing

ids/ips or the ISP.

8

4. Cowrie

4.2 Linux environment
For running my honeypot I decided to use Ubuntu 20.4.4 LTS release as the operating system. This OS

gives me the assurance that it won’t be discontinued in the near future and (security) updates are

still pushed. If there are any updates released in this version they will also be installed ASAP.

4.3 Honeypot virtual environment
For security reasons and optimal implementation of the honeypot solution I build a python virtual

environment inside the ubuntu machine in which the honeypot will run.

4.4 Starting the virtual-environment
The environment can be started by applying these steps into a bash shell:

• su cowrie (cowrie/XXX)

• sudo virtualenv cowrie-env

• cd /home/cowrie

• source cowrie/bin/activate

After following this procedure you will have a shell into the virtual environment for the honeypot.

4.5 Running the honeypot
The honeypot can be booted from inside the virtual environment we activated earlier.

Bin/cowrie start This will boot the honeypot

Bin/cowrie stop This will stop the honeypot

Bin/cowrie force-stop This will force-stop the honeypot without saving data

Bin/cowrie restart This will restart the honeypot

Bin/cowrie status This will provide the latest status of the honeypot

Bin/cowrie shell This will get you into the shell of the honeypot without having to connect yourself.

9

4.6 Configuration
The cowrie honeypot can be customized via the following configuration files:

- /etc/cowrie.cfg (configuration file for cowrie)

- /share/cowrie.fs.pickle (fake filesystem for the environment)

- /etc/userdb.txt (accepted credentials for telnet/ssh connections)

- Honeyfs/ (file contents for the fake filesystem)

- Honeyfs/etc/issue.net && honeyfs/etc/motd (pre & post login banners)

- Share/cowrie/txtcmds/ (create fake commands)

4.7 Logging
All attacks are logged by the honeypot and split up in different logging types.

In /home/cowrie/var/log/cowrie there is a cowrie.log & cowrie.json file which are 1 big logging file

with everything combined. There are also logs split up by day for more in depth analysis of specific

days. Besides that every unique connection is logged in a tty log which can be replayed with the

‘bin/playlog’ utility. This will redo the whole attack session in you’re gui exactly. Same commands,

same timeframes and all.

4.8 Honeynet
For the Linux honeypots I have 2 honeypots running, each spoofing another service. Both data

streams are going to the same data index from which the ELK stack will handle the data. Both

honeypot logs are tagged with an tag to differentiate which data is coming from which honeypot.

10

5. Backups

5.2 Snapshots
To prevent any data loss or broken machines because of crashes our virtual machines are daily

snapshotted so we can reinstate to a previous version easy whenever we need to.

5.3 SCP
All data coming from the honeypot hackers are pushed to the ELK stack for further processing. I

setup automated backups of the honeypot logs. Whenever a hacker quitted the session on the

honeypot a file watcher script will automatically copy the log file and push it to an FTP server over

SCP with a script that is running in the background 24/7.

11

6. Logstash

6.2 Information
For all of our honeypots we have a Logstash installation and configuration set up to extract data from

our logs and push it to Kibana over Elasticsearch. This script is divided in 3 pieces inputs, filters &

outputs. We want the data monitored by the honeypots to be pushed to, our Kibana dashboards

over our data search engine Elasticsearch. Logstash can connect to our Elasticsearch by making use

of the unique generated certificate from Elasticsearch. Logstash can be started via ‘systemctl start

logstash’. The logstash config can be found in /home/skwaleks/etc/logstash/conf.d/logstash-

cowrie.conf

6.3 Input
The input part of the script will take live data from the given logfile from the honeypot, this will be

given in a JSON format and a type as a name to use for further scripting. The codec will create a great

possibility for Logstash to decode your data.

6.4 Filters
The filters can be used to change, add, modify or interact with the data. The filter field will run

automatically when the type is our previously setup cowrie type. As the source of our data log we

use the ‘message’ field from our honeypot log data. To have datetime in the correct format we set

our timestamp field to the correct ISO code. The honeypot doesn’t add it’s own ip (host ip) to the

logs by default, because we have 2 honeypots we need to be able to differentiate from which host

they are coming, that’s why we add another field with the src_host ip in it. For visualizing where the

12

attacks come from we added the geoip2-lite city database so we can automatically point out cities

where the attacks are coming from on a map.

6.5 Output
The output field will take the data from the input field that pas been parsed trough the filters and will

push this to our data search engine called Elasticsearch. Whenever the type is cowrie, this config is

executed. We have an Elasticsearch service running on its default port (9200) so that’s where we are

trying to push too. For security reasons we implemented SSL certification. We use the elasticsearch-

ca.pem file to connect to our Elasticsearch instance. To be able to login on it we provide the

username and password to connect. Since all honeypots are pushing to the same Elasticsearch

instance we are giving ILM aliases to our data streams to be able to recognize them. All traffic from

my honeypots will be found as “ubuntu_cowrie_alex” in Elasticsearch.

13

14

7. Elasticsearch

7.2 Information
Elasticsearch is our data search engine, analytics & storing place. Elasticsearch can be connected to

over ‘https://192.168.69.111:9200’. This instance is called ‘elk-stack’ with a single node cluster

“elasticsearch”. Data in Elasticsearch is retrieved from Logstash. Our Kibana instance can pull data

from Elasticsearch to visualize and analyze. The Elasticsearch configuration can be found at

‘/etc/elasticsearch’

7.3 Security
To connect to Elasticsearch you need a special certificate “elasticsearch-ca.pem”. We implemented

password protection on the interface and for the connection. Elasticsearch is running only on the

https port.

15

8. Kibana

8.2 Intro
As the last step in the story of our ELK-stack we have Kibana. Kibana is being used as our visualization

and analysing tool. The Kibana dashboard can be found on https://192.168.69.111:5601 . Credentials

are custom generated. Kibana will grab the date from our Elasticsearch instance running on port

9200.

8.3 DB’s
In the Kibana Analytics section we build some dashboards for our honeypots. We created a

dashboard for every OS and one general dashboard. For the Linux dashboard I implemented different

types of visualization. There are visualisations showing the location of the attack and city. The

amount of attacks and unique attackers are shown with an average duration of the attack. The most

used usernames & passwords are shown. To get more insight what hackers are trying to exploit on

our system there is a table with the most used commands/input in our honeypot. The top 10 host

and source ip’s are ordered by usage in a table. The most attacked IP and the most cowrie event logs

are visualized in a piechart. Besides that there is a table with all used passwords checked if they

comply with the password policy from the companies honeypot.

https://192.168.69.111:5601/

16

8.4 Index management & patterns
My honeypot data is stored in an index named ‘ubuntu_cowrie_alex’ on the Elasticsearch instance.

To be able to extract the data from this index I created an index pattern on Kibana called

‘ubuntu_cowrie_alex*” with the ‘*’ as a wildcard for all the data from this pattern. This way I can use

the data stored in it for visualizations and analytics.

17

8.5 Custom labels
While having the data from our honeypot, our wishes are not satisfied. We’d like to have some

information/visualization on the dashboard with data we can’t get from our honeypots. That’s why

we scripted our own label field in Painless.

8.5.1 Private/public
To make it easier to differentiate public and private ip’s on our dashboard we made a script in

painless which will check if the attacker’s ip is in the private/public ip range. The script will return if

it’s public/private so we can use this data label in the Kibana visualization.

if (doc["src_ip"].size()!=0){

 def sourceip = doc['src_ip_voor_echt'].value;

 if (sourceip != null) {

 String start_range_172 = "172.16";

 String stop_range_172 = "172.32";

 int range_172_sub2 = 16;

 String start_range100 = "100.64";

 String stop_range100 = "100.128";

 int range_100_sub2 = 64;

 while (start_range_172 != stop_range_172) {

 start_range_172 = "172." + range_172_sub2;

 range_172_sub2++;

 if(sourceip.substring(0,6) == start_range_172){

 return

 }

 }

 while (start_range100 != stop_range100) {

 start_range100 = "100." + range_100_sub2;

 range_100_sub2++;

 if(sourceip.substring(0,6) == start_range100){

 return;

 }

 }

 if (sourceip.substring(0,7) == "192.168"){

 return;

 }

 else if(sourceip.substring(0,3) == "10."){

 return;

 }

 else{

 emit(sourceip);

 }

 }

18

 else {

 emit("Geen ip in src");

 }

}

else

{

 emit("Geen ip opgegeven");

}

8.5.2 Password check
Nowadays hackers get into systems by having thorough knowledge of the company they are

attacking. If an attacker uses passwords that are complying with the company’s custom password

policies they might have inside information or someone helping him. We made a script that will

check a password used by an hacker if it’s following the companies password policy.

8.5.2.1 Character Check

This script is to check if the used password contains a special character or not.

if (doc['password.keyword'].size() != 0){

 def input = doc['password.keyword'].value;

 int lengte = input.length();

 def lenstring = lengte.toString();

 int teller = 0;

 String label = "❌";

 def array = new def[] {

 "+", "-

", "&&", "||", "!", "(", ")", "{", "}", "[", "]", "^", "~", "*", "?", ":", "%", ";", "."

, "²", "/", "<", "\\", ">", "?"};

 int arraylengte = array.length;

 for (int i=0;i<arraylengte;i++) {

 if (input.contains(array[i])) {

 label = "✅";

 }

 }

 emit(label);

}else {

 emit("❌");

}

19

8.5.2.2 Number Check

This script is made to check if the password contains a number.

if (doc['password.keyword'].size() != 0){

 def input = doc['password.keyword'].value;

 int lengte = input.length();

 def lengtestring = lengte.toString();

 int count = 0;

 String label = "❌";

 def array = new def[] {

 "0", "1", "2", "3", "4", "5", "6", "7", "8", "9"};

 int arraylengte = array.length;

 for (int i=0;i<arraylengte;i++) {

 if (input.contains(array[i])) {

 label = "✅";

 }

 }

 emit(label);

}else {

 emit("❌");

}

8.5.2.3 Length Check

This script is made to check if the password follows the policy on length.

if (doc['password.keyword'].size() != 0){

 def input = doc['password.keyword'].value;

 int lengte = input.length();

 def lenstring = lengte.toString();

 if (lengte < 5) {

 emit("❌");

 }else if (lengte == 5){

 emit("✅");

 }

 else {

 emit("✅");

 }

}else {

 emit("❌");

}

20

8.5.2.4 Combined Check

This script combines all of the previous ones to check if the password follows all 3 policy rules.

if (doc['password.keyword'].size() != 0){

 def input = doc['password.keyword'].value;

 int lengte = input.length();

 def lenstring = lengte.toString();

 int teller = 0;

 String label = "❌";

 def array1 = new def[] {"+", "-

", "&&", "||", "!", "(", ")", "{", "}", "[", "]", "^", "~", "*", "?", ":", "%", ";", ".", "

²", "/", "<", "\\", ">", "?"};

 def array2 = new def[] {"0", "1", "2", "3", "4", "5", "6", "7", "8", "9"};

 if (lengte < 5) {

 emit(label)

 }

 else if (lengte >= 5){

 int arraylengte = array1.length;

 for (int i=0;i<arraylengte;i++) {

 if (input.contains(array1[i])) {

 int arraylengte2 = array2.length;

 for (int l=0;l<arraylengte2;l++) {

 if (input.contains(array2[l])) {

 label = "✅";

 emit(label);

 }

 else {

 label = "❌";

 }

 }

 }

 else {

 label = "❌";

 }

 }

 }

}

else {

 emit("❌");

}

21

8.5.3 Talos Check
Incoming IP addresses may already be known as hackers ip’s. That’s why I implemented checks on all

the public ip’s to the talos IP filter. I wrote a small script that will get the IP for the index, put it in a

value and make a request to the Talos website.

if (doc["src_ip"].size()==0){

 return

}else{

 def source = doc['src_ip'].value;

 if (source != null) {

 emit(source);

 }

 else {

 emit("None");

 }

}

22

8.6 Security
For security reasons we limited the access to the Kibana dashboard by integrating user accounts with

strong password policies. Kibana web dashboard has an SSL certificate and running on the PTLab

domain of the UTB FAI (chp.ptlab.utb.cz – not accessible from outside the network). To get the

domain up & running we setup a nginx site listener on the 443 port with the ssl certificate included in

the configuration. All user passwords are stored in the kibana-keystore.

